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Transport equations for the mass and energy carried by charged particles in a thermo- 
nuclear plasma are derived and solved using S. techniques. Results are in good agreement 
with an analytic solution to a representative test problem. 

I. INTR~DUOTI~N 

Growing interest in laser fusion experiments has encouraged the development of 
computer codes capable of simulating the thermonuclear burn characteristics 
of the experiments [l]. These computer simulations aid in the design of meaningful 
experiments and the understanding of their results [2]. Since charged particles 
borne by thermonuclear reactions within a burning DT sphere carry a significant 
fraction of the reactions’ energy, it is important to accurately simulate how and 
where the charged particles deposit their energy. Although local deposition has 
been used in the past [1], recent research has shown this to be an inadequate 
approximation [3]. In this paper, we show how S,, transport theory can be used 
to simulate charged particle mass and energy deposition in a thermonuclear plasma. 

It is a relatively simple matter to write down the charged particle transport 
equation and work out a set of difference equations from it; however, it is more 
difficult to derive a set of difference equations that explicitly conserve mass and 
energy. In this paper, we illustrate how the conservation requirements can be used 
to arrive at a set of difference equations that are both mathematically and physically 
meaningful. 

II. DERWAT~ON OF THE CHARGED PARTICLE TRANSPORT EQUATIONS 

To determine the charged particles’ mass and energy deposition, it is necessary 
to solve both the mass and energy transport equations. In this section, we present 
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a derivation of those two equations based on conservation arguments analogous 
to those used in neutron transport theory [4, 51. Let the charged particle be located 
at position r(t) with velocity v(t) relative to the plasma at time t. The particle 
experiences an acceleration of the form a(r, v, t) due to its Coulomb interaction 
with the plasma. Let N(r, v, t) dr dv be the number of charged particles with 
position coordinates between r and r + dr, and velocities between v and v + dv 
at time t. Then the change in the number of charged particles in phase space between 
times t and t + d t for small d t is given by 

N(r + dr, v f dv, t + At) dr’ dv’ - N(r, v, t) dr dv, (1) 

where dr’ and dv’ are volume elements in position and velocity space and are 
evaluated at t + d t. Here, 

fir = vdr, dv = adt. and 
N(r + dr, v + dv, t + At) dr’ dv’ = N(r’, v’, t + At) dr’ dv’. 

For small d t, dr’ and dv’ become 

where 

dr = dr@(r + v dr)/a(r)) E dr(1 + VT . v dt) = dr, 
dv’ = dv(a(v + a dt)/a(v)) g dv(1 + V, - a dt), 

a(r + v dr)/a(r) 

(2) 

(3) 

represents the Jacobian of the transformation from r(t) to r(t + At). In Eq. (3, 
V, . v = 0 because v and r are independent variables [Sj. Using Eqs. (2) and (3), 
Eq. (1) becomes 

{N(r + dr, v + dv, t + dt)[l + V, . a dt] - N(r, v, t)} dr dv 

= @N/at + v . VTN + a - V,N + NV, . a + O(dt) + O(dr) + O(dv)} dr dv dt, 
(4) 

where we have used a Taylor expansion of N(r + dr, v + dv, t + At) for small 
d t. Dropping first-order terms, Eq. (4) becomes 

{N(r + dr, v + dv, t + dt)(l + G, * a dt) - N(r, v, t)} dr dv 

= {@N/at) + v . V,N + a . V,N + NV, - a} dr dv dt. (5) 

A statement of mass conservation is that the change in the number of charged 
particles (Eq. (1)) in an element of phase space (dr dv dt) is equal to the sum of any 
sources of particles into that element minus the losses due to scattering. Thus, 
we may write the conservation statement as 

N(r + dr, v + dv, t + d t) dr’ dv’ - N(r, v, t) dr dv = SW dr dv d t - tmN dr dv At, 
(6) 
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where S,,, dr dv At represents the total source introduced into the element of phase 
space, v := 1 v (, and 0 is the scattering cross section. Using Eq. (5) in (6), dividing 
both sides by dr dv At, and taking the limit At -+ 0, we have 

(aN/at) + v * T,.N + a * t,N = S,\, - mN - NV, . a, (7) 

which is the transport equation for charged particles subjected to an acceleration 
a@, v, t) in a stationary plasma. Equation (7) may be written in the conservative 
form as 

(aN/at) + G, - (vN) + VP * (aN) = S.tf - t’aN, (8) 

since V, . v = 0. The term a . V,N in Eq. (7) corresponds to “streaming” of 
particles in velocity space, playing the same role as the v * V,.N term in position 
space. The term NV, . a represents a sink in the element of phase space due to 
the deceleration force acting on the charged particles. For the limiting case 
a + 0, Eqs. (7) and (8) reduce to the familiar form of the neutron transport 
equation. 

The transport equation for the energy carried by charged particles is derived 
through an application of the first law of thermodynamics. Let $(r, v, t) dr dv 
represent the kinetic energy carried by charged particles with position coordinates 
between r and r + dr, and velocities between v and v -t dv at time t. The energy 
deposited by the field of charged particles to the plasma as heat due to the coulomb 
drag is given by 

217 . a At ~,G/LI~. 

The statement of energy conservation is written 

#(r + Ar, v + Av, t + At) dr’ dv’ - $(r, v, t) dr dv 

- (2v * az,h/tJ) dr dv At = (SE - m,!~) dr dv At, (9) 

where the energy source S, is given by S, = iMu2S,\, . Equation (9) simply states 
that the increase in kinetic energy carried by the field of charged particles plus 
the heat energy deposited to the plasma (note that v . a -=c 0) equals the source of 
energy minus scattering losses. The derivation of the transport equation proceeds 
as before, resulting in the expression 

(a*/lat) + v . V,# + a * V,zj = SE - zq15 - +hV, . a + (2/u2) v * a*. (10) 

Equation (10) may be written in the conservative form 

(a#/&) + Tr - (v#) + V, * (a#) = SE - zvqb + (2/02) v * a*. (11) 

The term (2/u2) v . a$ acts as a “sink” in the transport equation and explicitly 
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accounts for the energy lost by the field of charged particles due to the coulomb 
drag. The fact that this term does not occur in Eq. (8) is indicative of the fact 
that mass is conserved in this problem, whereas kinetic energy is not conserved. 

III. REDUCTION TO A SPHERICALLY SYMMETRIC, ONE-DIMENSIONAL COORDINATE 
SYSTEM 

Let the charged particle’s location r be expressed in terms of the coordinates 
(r, p), where p = r . vjrtl. Assuming spherical symmetry we have 

a = a(v/u). (12) 

The number density of charged particles N(r, v, t) may be written N(r, c’, p, t), 
and the velocity v may be expressed in terms of the r and 8 directions by using the 
relations ~7,. = u cos 0, and Q = u sin 8, where p = cos 0. 

With these definitions, the directional derivative v * 0, becomes 

(13) 

The term a - V, is given by 

Finally, the term V, * a is easily seen to be 

Vt, . a = (l,/v”)(a,/&) a2u. (15) 

Using these results, the mass transport equation (7) can be written in spherical 
coordinates as 

(av2N) = S, - zmN. (16) 

Similarly, the energy transport equation (10) becomes 

It is customary [4, 51 to express the neutron transport equation in terms of the 
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flux 4 of neutrons, where # q = z-N. Using this relation, the charged particle 
transport equation (16) becomes 

This equation is stated only to illustrate the use of the conservation requirement in 
a later section. The numerical solution of Eq. (18) for charged particle transport 
leads to erroneous results, as will be demonstrated later (e.g., Eq. (53)). 

IV. FUNCTIONAL FORM OF THE COULOMB DRAG 

The Coulomb drag term a is given by 

dv 1 dEv a=---=---- 
dt M dr P (19) 

and dE/dr < 0. In a recent paper. Evans [3] summarized the derivation of the 
functional form of dE/dr and discussed its effect on the energy deposition of a 
charged particle in a fully ionized plasma. In the following paragraphs, we 
summarize his results in a form suited to our needs. 

The drag experienced by a charged particle moving through a plasma is due to 
its interaction with both electrons and ions in the plasma. Let Ze and A be the 
charge and the atomic weight of the particle, let Zje, Aj , and Nj be the charge, 
atomic weight, and number density of thejth ionic constituent of the plasma. The 
drag experienced by the charged particle due to the ionic constituents of the plasma 
is given by 

-<dE/dr>, = BJE WV/cm), (20) 
where 

Bi = 0.130284AZ2 1 (Zi2/Aj) NjFj(yj) (lj ? (21) 

with 
yj* = (A,/A)(E/kT’), (22) 

F,(Yj) = @(~‘j> - [1 + (AJA>lYP(YiL (23) 

and @ is the error function, @’ its derivative, kTi the ion temperature (in MeV), 
and Nj is expressed in units of lo** cm-3. The ion term (lj is 

Aj = Aqj = Kj’ f 4 ln(EkT,jN,), E/E* > 1 
Kj’ = 14.9984 + In(A’l”AJ(A + A,)) 

= llcj = (lQj + 3 In(E/E*), E/E* < 1, 
(24) 
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where k T, is the electron temperature in MeV, N, is the number density of electrons 
(in 10z4 cm-“) and E/E* = (X/2Lj2, where 

X/2L = (137/2) ZZ,(C/v) (25) 

and C is the speed of light. 
The drag due to electrons in the plasma is given by 

where 

with 

-(dE/drje = Be/E, WV/cm), (26) 

B, = 239.216AZ2N,F,(y,) A, (27) 

Ye2 = WeIMdEIk TJ, (28) 

Foe) = @(Ye) - [1 + W,IAMD)l Ye@‘(YA (29) 

where M, is the mass of a proton and M, is the mass of an electron. The electron 
term A, is given by 

‘1, = A,, = Kfl + ln(kT,/(N,)l/?), kT, > kT,*, K’I = 11.4434, 

= A,, = A,, + + In(kT,/kT,*), kT, < kT,*, 
(30) 

where kT,* = 3.62822 x 1O-5Z2 (MeV). 
With the functional form of a defined by Eqs. (19)-(30) we now proceed to derive 

the difference equations from the charged particle transport equations. 

V. DERIVATION OF THE DIFFERENCE EQUATIONS 

Following the standard method [4] for differencing the transport equation, 
phase space is partitioned by the discrete ordinates {ri}:=r , {p,}zS1, {tS}fI , and 
h},“=, 7 where ri < ritl , CL,,, < ~,,,+r , t, < tsfl , and 13, > ZJ~+~ . The quantities 
t s+1c2, rjhl12, pmfl12. and 17,+~~ are defined by 

t s+1!9 = us + ts+*), ri+l/2 = Hri + ri+A 

Pm+1k? = hl + pm+A 2',+1:* = fr(Zlo + P,+l). 
(31) 

Half-integral subscripts correspond to cell boundaries, integral subscripts corre- 
spond to cell centered quantities. The conservative difference form of the transport 
equations are now derived using the discrete ordinate method as in neutron 
transport theory [4, 51. 
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The conservative ditferencing operator K is defined by 

~32) 

where 
/3 = At, Ari3/3 Ap., Avg3/3. 

The quantities At, , AriB, Apm , and dug3 are given by 

At, = tst1!2 - ts-li2, Ari3 = ri3+1,,2 - rf-1,2, 
(33) 

The operator K is used to difference both the mass transport equation (16) and 
the energy transport equation (17). This operator averages the expression it is 
applied to over the phase space ceil At, Ari3 Apu, Atrg3. The fact that K is conser- 
vative will be proved in the tollowing section. 

Applying K to both sides of Eq. (16), the mass transport equation becomes 

where Vi = Ari3/3 

At+l/, = rf+,!, , 

N = Nt, , ri , pnl , 4, 

N Sfli2 = Wfs+l,z 2 ri , I+ , Lag), 

Nitl/z = Wts T ri+m , pFlm , 4, 

N m+l/2 = N(t, T ri , ~~~~~~ , 4, 

NV+,/2 = NO, v ri , P, , u,+uA etc. 

(35) 

and the values of W, and CY,&~/~ are defined in the standard way [4, 51 so as to 
assure rotation-reflection invariance. In a similar manner. the differenced form of 
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the energy transport equation is obtained by applying K to both sides of Eq. (17). 
The result is 

where a,, = a(~,). The term 2(3/~lv,~)(Av,~/2) a,& acts as an absorption in the 
difference equation and accounts for the energy lost to the coulomb drag. 

VI. CONSERVATION REQUIREMENTS 

To demonstrate that Eqs. (34) and (36) satisfy the conservation requirements, 
we analyze an idealized “thought problem.” Consider a burning DT sphere 
enclosed by a sphere of lead in an otherwise empty region of space (see Fig. 1). 

FIG. 1. Burning DT sphere with radius R, enclosed by a sphere of lead with radius R, . 

Both the mass and the energy of the charged particles born by thermonuclear 
reactions within the DT sphere remain within the gas-lead system. Suppose that 
the charged particles are born with velocity V and are degraded in energy by the 
coulomb drag force until they reach velocity VT , which is their thermal velocity. 
Consider the operator 

(37) 

where the integration limits of r extend from the center of the spheres to the 
surface S, at R, , and the integration limits of v extend from I’,,,,, to Q,~ , where 

5W20/3-4 
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t’G+lte < V, and z’1!2 > I’. Applying L to Eq. (8), the conservation statement 
becomes 

A$ - NT, = 5yM (38) 

since 

L(O, . vN) = I NV . d$ = 0, 
ST 

s 

(39) 
L(V,, . aN) = Na . d& = 0, 

St. 

where d$ and ds, are outward directed elements of surface area in position and 
velocity space with unit normal directions, u = 0, and S, is the surface in velocity 
space defined by 1 v I = t’1!2 . The quantities J$ and Sp, are defined by 

Jv;. = 1 d3r 1 d3v N(r, Z’, T), 
. . 

(40) 

9, = (1 dt s d3r i d3z1 SM(r, 13, t). 

Equations (39) state that no charged particles flow into or out of the surface at R, , 
nor is there a source of charged particles with velocity z’ > z’ii2 . Equation (38) 
states that the increase in charged particles within the gas-lead system during the 
time interval (T - T,,) equals the integrated source of charged particles during 
that time. 

In a similar manner, L may be applied to Eq. (11) with the result 

!PT = s d3r 1 d3v #(r, v, T), 

Z’= -~~odt~d3r/d3v(2/v)a#, 

YE = f~dt~d3r~d3vSE. 

(42) 

Equation (41) states that the increase in kinetic energy by the field of charged 
particles plus the energy deposited to the gas-lead system as heat due to the 
coulomb drag equals the total integrated source of energy. It is crucial that any 
difference equations derived from Eqs. (8) and (11) explicitly retain these conser- 
vation properties. Otherwise, the solution will be erroneous. 
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The operator L is also given by 

(43) 

where tl12 = To , I,,,,, = T, r1,2 = 0, and r1+112 = R, . Thus, the application of L 
to Eqs. (8) and (11) corresponds to the application of operator L’ to Eqs. (34) and 
(36), where 

L’=CCCCP. (44) 
s img 

Applying L’ to Eq. (34) results in the expression 

since the other terms telescope and the boundary conditions are specified to be 

Similarly, applying L’ to Eq. (36) results in the expression 

Equations (45) and (47) correspond to Eqs. (38) and (41), respectively. This corre- 
spondence reveals that Eqs. (34) and (36) explicity conserve the mass and energy 
of the charged particles. 

The energy deposited as heat to a particular zone of the gas-lead system is given 
by 

- 1 2 A t(dr?/3) dp,(A~,~/2) a,~/. 
sing 

(48) 

To obtain the amount of mass deposited by the field of charged particles to a 
particular zone of the system, we chose uG > V, . This choice ensures that a,*,,, < 0 
for all groups g. The mass deposited to a particular zone is then given by 

(49) 
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The effective source of energy in Eq. (41) 

does not equal the exact energy source 

c kqV2SM, 
simo 

(50) 

(51) 

due to discretization error. This error is remedied by replacing the source term 
S,$, in Eq. (50) by the fictitious source SIW’, where 

Sh,’ = V2((43/3)/(&5/5)) s, . (52) 

Returning now to Eq. (18), the alternate form of the mass transport Eq. (16), we 
readily find that the application of L to Eq. (18) results in the expression 

Due to the presence of the absorption 

C AWi3/3) 4, Au w$, 
aims 

Eq. (52) does not correspond to the conservation statement given by Eq. (38). 
From this, it is clear that Eq. (18) though apparently mathematically equivalent 
to Eq. (16), does not lead to a conservative difference equation and cannot be 
used to obtain a numerical solution of the transport equation (8). Thus, the 
conservation requirements place a powerful restriction on the form of the difference 
equations representing the transport equations (8) and (11). 

The conservation requirements also demand the solution of both Eqs. (34) 
and (36) in order to determine the charged particle mass and energy deposition 
in the plasma. Although numerous formulae may be written that express the energy 
deposition in terms of the values of N(t, r, p, v) and a@, U, t), these formulas cannot 
be proved to conserve energy (as done in this section) and do not conserve energy 
when used in a code. Such formulas can be normalized by the prior knowledge 
of Sp, and forced to conserve energy; however, the results do not enjoy excellent 
agreement with the results of Cooper and Evans [7]. Results using the solution 
of Eq. (36) do enjoy such agreement and are presented in Section VIII. 
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VII. STEP FUNCTION SOLUTION OF THE DIFFERENCE EQUATIONS 

For the sake of illustration, Eqs. (34) and (36) will be solved using step function 
extrapolation. More sophisticated methods of solution including the LS, [6] 
method will be described in future publications. In Eq. (34), let N,,,,, = Ni+1,2 = 
N B+l12 = N for p., > 0. Similarly, in Eq. (36), let #,+r,, = #i+l,z = zJ,+~,~ = #. 
Then, Eqs. (34) and (36) may be solved for N and #, resulting in the expressions 

& + !$ (+$$g)Aitl/2 + 
b4i+1,2 - -4~2) ( “d;;; ) a?2 ’ Vi 

+ bi$) %+1/2t..i+1/2 + (*) u 
I 
(54) 

Siu + & h-l/2 + e ($$$ Ai-1,2&-l/2 

+ (Ai+l/z - 
Vi e 1 

Ai+1,2 + (Ai+lPi ;, Ai-112) (+t!%) + ’ 

ag+1,2t.t+1,2 + (*) 0 - 2 (-i&)(T) a, 
I 

(55) 

For pL, < 0, the relations Ni--1,2 = N and $i-l,l = 16 are used to determine the 
values of N and #J. Using Eqs. (54) and (55) to obtain the values of N,,,,, ,..., NB+1,2, 
* s+112 ,.*., v&+*12 3 the transport equations (34) and (36) may be solved throughout 
the regions of interest. 

During an actual calculation, values of S, are supplied to the subroutine 
performing charged particle transport from a driver program using calculated 
values of the zonal thermonuclear burn rates. Methods for calculating these rates 
are given in [l]. Since we have assumed the charged particles interact with the 
plasma only by small angle scattering (resulting in the coulomb drag term a), 
the value of u used in our calculations is u = 0. We have investigated the numerical 
simulation of large angle scattering of charged particles, but due to storage 
limitations, these effects are not presently included in our computer program. 
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Values of Ari and M required to achieve acceptable accuracy are problem depen- 
dent; however, some insight can be gained from the values used in calculations 
described in the following sections. Values of At, are customarily ‘chosen dynami- 
cally by methods described in [I]. 

VIII. RESULTS 

A computer program designed to transport charged particles based on the 
mathematical results of the previous sections has been written and is in use at 
our laboratory. We have used this code to calculate alpha particle energy deposition 
in a reacting DT sphere. The sphere contains equal numbers of deuterium and 
tritium atoms and is assumed to be fully ionized at a uniform temperature and 
density. The alpha particles are created uniformly in the sphere with an initial 
energy of 3.51 MeV and an isotropic angular distribution. Fig. 2 is a graph of the 

FIG. 2. Fraction of energy 7 escaping a burning DT sphere at a temperature of 5 keV and a 
density of 0.2125 g/cm* with radius 7 in mean free paths. -, analytic result; 0, step function 
solution; x , LSN solution. 

fraction of energy r) escaping the sphere as a function of the sphere’s radius r 
in mean free paths. The results of LS,, charged particle transport are in excellent 
agreement with the analytic results of Cooper and Evans [7], while the use of the 
step function solution of the transport equation results in moderately good agree- 
ment with the analytic solution. 

Figure 3 is a graph of the fraction of energy deposited within a subsphere of 
the burning DT sphere with radius T = 2. Again, the results of LS, charged 
particle transport are in excellent agreement with analytic results. The step function 
solution enjoys surprisingly good agreement with the results of Cooper and Evans 



CHARGED PARTICLE MASS AND ENERGY TRANSPORT 311 

FIG. 3. Percentage of the total energy born within a burning DT sphere with radius 7 = 2.0 
deposited within a subsphere with radius 7. The sphere has a density of 0.2125 g/cm8 and a 
temperature of 5 KeV. -, analytic result; 0, step function solution; X, LSN solution. 

for this particular problem. These example calculations show that S, techniques 
are able to model correctly both the global and local energy deposition of charged 
particles in a burning DT plasma. 

Both of the calculations described above were performed using an S, approxi- 
mation (M = 5) with 20 zones (I = 21) in the burning DT sphere and 18 groups 
(G = 19). Time steps on the order of dt = lo-lo seconds were used; however, 
larger values result in little change. Increasing the values of Z or A4 result in no 
visible change on the graphs, so that convergence appears to have been obtained 
for these problems. We have not made a detailed study of the dependence of 
the convergence of the calculation on values of Z, M, G, and At; the modest values 
mentioned here have been adequate for all the calculations we have made to date. 
The calculation of Fig. 3 required 16 set of CPU time on a CDC 7600 machine. 
Inclusion of the charged particle transport package described in this paper to a 
one-dimensional laser fusion code (such as described in [l]) typically doubles 
the running time for representative problems. 

IX. CONCLUSIONS 

The charged particle mass and energy transport equations have been derived and 
differenced in a conservative manner. Future papers will present results using these 
equations to obtain the mass and energy deposition for a number of physically 
interesting problems. Charged particle momentum transport and deposition will 
also be discussed. 
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